skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Liang, Kyle"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Many Cyber-Physical Systems (CPS) have timing constraints that must be met by the cyber components (software and the network) to ensure safety. It is a tedious job to check if a CPS meets its timing requirement especially when they are distributed and the software and/or the underlying computing platforms are complex. Furthermore, the system design is brittle since a timing failure can still happen e.g., network failure, soft error bit flip, etc. In this paper, we propose a new design methodology called Plan B where timing constraints of the CPS are monitored at the runtime, and a proper backup routine is executed when a timing failure happens to ensure safety. We provide a model on how to express the desired timing behavior using a set of timing constructs in a C/C++ code and how to efficiently monitor them at the runtime. We showcase the effectiveness of our approach by conducting experiments on three case studies: 1) the full software stack for autonomous driving (Apollo), 2) a multi-agent system with 1/10th scale model robots, and 3) a quadrotor for search and rescue application. We show that the system remains safe and stable even when intentional faults are injected to cause a timing failure. We also demonstrate that the system can achieve graceful degradation when a less extreme timing failure happens. 
    more » « less